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1 Introduction

Using the techniques of integrability, much progress has been made towards confirming

the complete identification of the planar spectra of N = 4 gauge theory and AdS5 × S5

string theory implied by the AdS/CFT correspondence [1]. First, the construction of the

scattering matrix and the asymptotic Bethe ansatz [2, 3] turned reachable the spectrum

of asymptotically long operators and infinitely fast strings in the supergravity background.

For short operators, or strings with small charges it was shown that the Bethe ansatz equa-

tions are no longer valid (see for example [4]). In the gauge theory wrapping interactions

need to be taken into account when the perturbative order reaches the length L of the

gauge invariant operator [5] while in the string theory finite-size effects come from virtual

corrections traveling around the worldsheet cylinder [6]. Recently, however, even wrapping

effects have started to become manageable. The four-loop anomalous dimension of the

Konishi operator, which is the simplest case where wrapping effects are present, has been

obtained both from perturbative computations on the gauge theory side [7] and from a

thermodynamic Bethe ansatz calculation based on the quantum field theory of the string

worldsheet [8]. This last approach was subsequently extended to the entire spectrum of

twist-two operators [9]. Finally, there is a recent proposal, also based on integrable two-

dimensional QFT, for a set of equations determining the wrapping corrections to the entire

spectrum of planar, gauge invariant operators [10].

Given this success in the maximally supersymmetric case, one would like to find other

examples of gauge/gravity correspondences which exhibit integrability. One possibility is

to deform the N = 4 theory in such a way that the maximum amount of integrability is

preserved. With this in mind, one can consider marginally β-deformed N = 4 theory [11],
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which has integrable subsectors [12, 13], admitting an asymptotic Bethe ansatz. The β-

deformed theory is obtained from the N = 4 theory by modifiying the superpotential as

Tr([X, Y ], Z) → eiπβTr(X, Y, Z) − e−iπβTr(Y, X, Z) . (1.1)

The deformation β can be complex in general, but we will limit ourselves to the study

of real β, for which the theory remains superconformal [14] and probably completely in-

tegrable. The string theory dual of this theory was constructed in [15], and is obtained

by deforming the S5 part of the background through a series of T-duality transformations

and shifts of angular variables. The integrable structure of the string theory was analyzed

in [16]. Wrapping calculations have been performed in the deformed theory for operators

corresponding to one and two magnons [17, 18], and the first finite size correction to the

giant magnon dispersion relation has been obtained on the string side [19].

In this note we will see that at least in the SU(2)β-sector, consisting of scalar operators

of the form

Tr(ΦZZΦ · · · ) , (1.2)

the energies, including their wrapping corrections, have a certain symmetry, which re-

lates them at different values of the deformation. One can then use this symmetry to

obtain additional information on the original N = 4 theory. In particular, we will ex-

tract the first wrapping correction to the magnon dispersion relation (for a discrete set of

momenta), which can give insights into the structure of the wrapping dependence of the

dilatation operator.

To be more precise, we will provide evidence that for a spin chain of length L de-

formations differing by 1/L are equivalent. The equality of spectra at β and β + 1/L is

obvious in the twisted asymptotic Bethe ansatz, and not difficult to see in the asymptotic

Hamiltonian. It is however not clear whether wrapping respects the equivalence, but we

will show that the first contribution to wrapping in certain cases is consistent with it.

The equality is, however, not directly visible from the gauge theory since spin chain

states that satisfy the cyclicity constraint, which is the condition that physical, single trace

operators must satisfy, at deformation β will generally not do so at β+1/L. But the equality

of spectra is still useful and we will see, as mentioned above, how it can be employed to

extract information on the magnon dispersion relation and the physical spectrum. One

can also combine it with the symmetry β → −β in order to relate the spectra at several

inequivalent values of the deformation.

In section two we will show why the spin chain spectra is the same at β and β +1/L in

the asymptotic case. We also mention a wrapping correction that satisfies the symmetry

and note how the string theory finite size corrections are consistent with it. In section three

we provide further evidence that wrapping respects the symmetry, showing the equality of

the energies of the L = 4, 6, 8 magnon at β = 0, p = π and β = 1/2, p = 0, and that the

coefficient of the maximal trascendentality term is the same for all L. As an application,

we note that the equality of these energies provides an efficient way of calculating the first

wrapping correction to the physical magnon operator anomalous dimension at β = 1/2. We

end the section by using the symmetry to obtain the magnon dispersion relation of N = 4

for some specific values of the momentum. We then present some concluding remarks in

section four.
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2 Equality of the spectra at β and β + 1/L

In this section we will show that the spectra for the SU(2)β spin chain at deformation

β is the same as that for deformation β + 1/L. We will begin by looking at the Bethe

ansatz, after which we will study the structure of the hamiltonian. Let us for convenience

consider in detail the one-loop ansatz [12]. The discussion carries over unaltered to the

asymptotic all-loop case, since the deformation enters in the same way [13, 20]. The

marginally deformed one-loop SU(2) Bethe ansatz, with real deformation parameter β, is

given by

e−2πiβL

(

uk + i/2

uk − i/2

)L

=
M
∏

j 6=k=1

uk − uj + i

uk − uj − i
, (2.1)

with cyclicity contraint
M
∏

k=1

uk + i/2

uk − i/2
= e2πiβM , (2.2)

and magnon energy

Ek =
2g2

u2
k + 1/4

. (2.3)

When β → β + 1/L, the deformation factor e−2πiβL is unaltered in (2.1). Thus, any set of

rapidities solving the Bethe equations for deformation β will also do so for β + 1/L, and

vice versa. Furthermore, (2.3) shows that the solution has the same energy in both cases.

The only thing that can be violated is the cyclicity constraint (2.2), which implies that the

total momentum of the state is shifted1 by −2πM/L on going from β to β +1/L. Physical

states (satisfying the cyclicity constraint) at deformation β will therefore correspond to

unphysical states at deformation β + 1/L. We thus find a symmetry of the more general

spin chain, with the cyclicity constraint removed, which the gauge theory is embedded in.

In what follows we will be particularly interested in the symmetry β → β + 1/2, present

for even length spin chains (obtained by applying the general symmetry L/2 times). The

cyclicity constraint then implies that physical states with odd magnon number in one case

will correspond to unphysical states of total momentum p = π in the other.

Let us now exhibit the symmetry between the different values of β at the level of

the spin chain Hamiltonian. The undeformed Hamiltonian can be written as a linear

combination of generalized permutations [21],

{a1, . . . , an} ≡
L−1
∑

l=0

Pa1+l, a1+l+1 · · ·Pan+l, an+l+1 , (2.4)

1This assumes that we are using the picture of a periodic spin chain, so that physical operators correspond

to zero total momentum. Alternatively, one can eliminate the deformation dependence of the dispersion

relation and the S-matrix by introducing twisted boundary conditions [12, 20]. In the latter case, the mo-

mentum is not altered upon changing β, and the cyclicity constraint instead gives a β-dependent momentum

condition for physical operators.

– 3 –



J
H
E
P
0
4
(
2
0
0
9
)
1
3
0

where the Pi, i+1 permutes the spins at sites i and i + 1 and can be written in terms of the

Pauli matrices as

Pi, i+1 =
1

2

(

11i, i+1 + σz
i ⊗ σz

i+1 + σ+
i ⊗ σ−

i+1 + σ−
i ⊗ σ+

i+1

)

. (2.5)

The asymptotic deformed Hamiltonian can be obtained from the undeformed one by simply

replacing all permutations (2.5) with deformed operators [12, 17, 20],

P i, i+1 =
1

2

(

11i, i+1 + σz
i ⊗ σz

i+1 + e2πiβσ+
i ⊗ σ−

i+1 + e−2πiβσ−
i ⊗ σ+

i+1

)

. (2.6)

The coefficients that multiply the generalized permutations do not change when going to

the deformed theory. Now, making the change β → β + 1/L produces additional phases

multiplying the last two terms in (2.6), but which can be removed by performing a non-

local change of basis, such as the one in [12]. Normally, such a change of basis introduces

an additional twist in the boundary conditions, but when the change in deformation is 1/L,

the twist becomes unity. This can also be combined with the more obvious symmetry

β → −β , pk → −pk , (2.7)

which can be read directly from (2.6), since the reversal of β can be undone by changing

the order of the sites, or equivalently, by changing the sign of the magnon momenta. For

β = 0 and β = 1/2 this reduces to the ordinary parity symmetry.

It is however not clear whether wrapping effects will spoil the correspondence between

β and β + 1/L. One would therefore like some wrapping computations respecting the

symmetry. As a first example, the dimensions of all even length operators with even number

of impurities M should coincide at β = 0 and β = 1/2, since the cyclicity constraint is

not violated in that case. In particular, the M = 2 operator should respect the symmetry.

In [17] the anomalous dimension of the two-impurity operator is given as a function of β,

for L = 4, and the deformation enters through cos(4πβ), invariant under both β → β +1/2

and β → −β. In the next section we will also show the equality of two single-magnon

energies at β = 0 and β = 1/2.

Further evidence in favor of the symmetry arises from string theory. The first finite

size correction to the magnon dispersion relation in the β-deformed theory was calculated

in [19]. At strong-coupling the deformation enters through a quantity cos Φ, where

Φ =
2π(n2 − βL)

23/2 cos3 p̃
4

, (2.8)

where n2 is a winding number, which in order for the existence of a solution to the equations

of motion, had to be chosen as [βL], the integer nearest to βL. The quantity p̃ is the

momentum when twisted boundary conditions are used, or if one prefers periodic boundary

conditions is related to the periodic momentum p via

p̃ = p + 2πβ . (2.9)

The momentum p̃ is invariant under the symmetry, while the complete phase (2.8) is so

(in addition to the β → −β symmetry) when the winding is set to [βL]. Different choices

of the winding, such as a fixed number, would violate the symmetry for general p̃.
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3 Equality of magnon energies

An essential ingredient in the asymptotic Bethe ansatz of marginally β-deformed N = 4

Yang-Mills is the magnon dispersion relation [2, 20],

E = −1 +

√

1 + 16g2 sin2

(

p̃

2

)

, (3.1)

where g2 ≡ g2
YMN/16π2 and p̃ is defined in the previous section. For a non-zero β-

deformation, single-magnon operators

Tr
(

ΦZL−1
)

(3.2)

are not protected by supersymmetry and thus acquire non-zero anomalous dimension given

by (3.1) with p̃ = 2πβ. As (3.1) does not explicitly depend on β it is invariant under the

symmetry β → β + 1/L. In this section we will show the equality of the first wrapping

correction to the energies of the physical β = 1/2 magnon, and the β = 0, p = π magnon,

for even L, as expected from the symmetry. We will first study the case L = 4 and then

move on to larger L, relying on the formula recently presented in [18] for the first wrapping

contribution to the anomalous dimensions of the single magnon operators (3.2) in the β-

deformed theory. It was shown that the first wrapping correction, appearing at order g2L,

takes the general form

δγβ
L = −2Lg2L

[

(

CL,0(β)−CL,L−1(β)
)

PL−2

⌊L

2
⌋−1

∑

j=0

(

CL,j(β)−CL,L−j−1(β)
)

I
(j+1)
L

]

, (3.3)

where

CL,j(β) = −8 sin2(πβ) cos [2πβ(L − j − 1)] , PL =
2

L

(

2L − 3

L − 1

)

ζ(2L − 3) . (3.4)

The integrals I
(j+1)
L are presented explicitly up to nine-loops in [18]. When β = 1/2 one has

δγ
1/2
L = −16Lg2L

(

1 − (−1)(L−1)
)

[

PL − 2

⌊L

2
⌋−1

∑

j=0

(−1)jI
(j+1)
L

]

. (3.5)

Interestingly, the wrapping contribution vanishes for all odd operator lengths when β = 1/2.

Furthermore, using (see the appendix in [18])

I
(1)
4 =

1

2
ζ(3) +

5

2
ζ(5) , I

(2)
4 = −

3

2
ζ(3) +

5

2
ζ(5) , (3.6)

we get the first non-trivial wrapping correction to the operator of length four as

δγ
1/2
4 = 512ζ(3) − 640ζ(5) . (3.7)

In the β-deformed theory, one can thus obtain some non-trivial information about

wrapping corrections to the magnon dispersion relation solely from the physical spectrum.
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By constrast, this would seem impossible in the original N = 4 theory. However, in [22] it

was suggested that this not be the case. Instead it appears to be possible to extract the

energy of a magnon of momentum p = π from the physical spectrum of twist-two operators.

To be more precise, the anomalous dimension of twist-two operators

Tr
(

ZDMZ
)

, (3.8)

can be expanded perturbatively as

γ(M) =

∞
∑

r=1

γr(M)g2r , (3.9)

where the γr(M) can be conveniently expressed through a basis of harmonic sums, de-

fined through

Sa ≡
M
∑

j=1

(sgn(a))j

ja
, Sa1,...,an

≡
M
∑

j=1

(sgn(a1))
j

ja1

Sa2,...,an
(j) . (3.10)

Setting M = 1 into the three-loop expressions [23] one finds [22],

γ(1) = 8g2 − 32g4 + 256g6 + · · · , (3.11)

which coincides with the expansion of the dispersion relation (3.1) at p = π. Furthermore

setting M = 1 into the four-loop term in the asymptotic Bethe ansatz formula [4] this

trend continues. We can thus interpret γ(1) as giving the energy of a single magnon of

momentum p = π.2 Therefore if it continues to hold to higher orders that γ(1) is the energy

of a single magnon with momentum p = π then we should be able to extract non-trivial

information about the magnon dispersion relation directly from the physical spectrum. The

way this bypasses the physical zero-momentum constraint is that only even values of M

correspond to physical, gauge theory states. Odd M are unphysical, as is the p = π state

found at M = 1. Information about such unphysical states can be obtained by analytically

continuing from the physical values of M . In fact the prescription used for analytically

continuing the harmonic sums is the (−) prescription of [24]. and coincides with (3.10)

at odd values of M . By contrast, usually the physical (+) prescription is used in N = 4

Yang-Mills, since it connects the physical, even M states.

2Indeed, at M = 1, the one-loop Baxter equation is given by

(u + i/2)L PM (u + i) + (u − i/2)L PM (u − i) = t(u)PM (u) , (3.12)

where

PM (u) ∝
M
Y

i=1

(u − ui) , (3.13)

given in terms of the Bethe roots {ui}, and the transfer matrix

t(u) = 2uL + · · · , (3.14)

is a polynomial where the omitted terms, depending on M and L, are of lower powers in u. The only

non-trivial solution for M = 1 and L even, which follows from requiring that the highest powers of t(u) be

2uL, is that P1(u) ∝ u. We thus have a single u = 0 root at even L, corresponding to p = π.

– 6 –
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Starting from four loops wrapping contributions will affect the twist-two anomalous

dimension. It was suggested in [22] that such contributions would cancel when M = 1,

and therefore would not affect the dispersion relation for p = π. However, the complete

spectrum of twist-two operators at four-loops including wrapping effects has been computed

recently [9]. The wrapping contributions are given by

δγ4(M) = 256S2
1 (−S5 + S−5 + 2S4,1 − 2S3,−2 + 2S−2,−3 − 4S−2,−2,1)− (3.15)

− 512S2
1S−2ζ(3) − 640S2

1ζ(5) .

In the single magnon case this expression becomes3

γ4,wrapping(1) = 512ζ(3) − 640ζ(5) , (3.16)

which coincides with the wrapping contribution (3.7) to the magnon operator at β = 1/2.

We have thus verified that the p = π magnon in N = 4 Yang-Mills and the β = 1/2

physical magnon have the same energy up to four-loops, including wrapping effects, with

the length of the spin chain such that wrapping starts at four loops. This is consistent

with the β → β + 1/2 symmetry.

We will shortly verify also the cases L = 6 and L = 8. But let us first simply note

that an important issue in evaluating the wrapping contribution of [9] is that special care

must be taken at the odd values of M . To make sure that wrapping starts at the correct

perturbative order an additional (−1)M factor must be introduced at a certain point in

the expression for the wrapping contribution. This prescription is a departure from the

physical analytical continuation, and seems to be equivalent to a re-insertion of the (−1)M

factor in the definition of the alternating harmonic sums. The main consequence of this is

that the wrapping contributions obtained in [9] at odd values of M correspond to the (−)

analytical continuation, which is precisely the prescription to be applied in our case.

In what follows we will extend the previous results to longer spin chains. The for-

mula (3.5) can be applied to extract the first wrapping correction to the β = 1/2 magnon

energy for arbitrarily large L, but since the integrals I
(j+1)
L are given explicitly up to L = 9

in [18] we will mainly limit ourselves to studying the first cases. We will however check

that the transcendentality structures of the two magnon energies coincide also to higher L,

and show that the coefficients of the maximal transcendentality terms match to all L. For

the p = π, undeformed case, one can obtain the wrapping correction for longer spin chains

from the equations of [9] by simply chosing different values for L in the exponential term.

In fact, as shown in appendix A, for the single magnon, and L even, the formula for the

wrapping correction takes the simple form4

δE(L)=−256 · 4L−2ig2L
∞
∑

Q=1

Resq=iQ

[

Q2
(

1 − 1/(q2 + Q2)
)2

(q2+(Q − 1)2)(q2+(Q+1)2)(q2+Q2)L−2

]

, (3.17)

3The non-vanishing irrational contribution was not expected in [22].
4A closed form for this expression, which answers many of the questions raised below, was produced

in [25].
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where we have chosen to write this in terms of the SU(2)-sector length, explaining why it

enters as L − 2. Evaluating this expression for L = 6 and L = 8 one has

δE(6) = 128
[

32ζ(5) + 28ζ(7) − 63ζ(9)
]

, (3.18)

δE(8) = 768
[

32ζ(7) + 64ζ(9) + 44ζ(11) − 143ζ(13)
]

. (3.19)

These expressions coincide with what is obtained from (3.5).

For higher L we can also check that (3.3) and (3.17) have certain aspects in common.

To start with, for all the cases we have checked, the rational parts of both equations

are zero. It may be possible to prove this in general, but it is not obvious at all from

expression (3.17). For example, for L = 4, the integral gives

−
640

Q5
+

512

Q3
+

4096Q(1 + 16Q2 − 16Q4)

(1 − 4Q2)4
, (3.20)

where the first two terms obviously sum up to the result. The last term is responsable for

the rational part, and sums up to zero. Going further, we have checked that up to at least

L = 30, the entire trancendentality structure of (3.17) coincides with what is expected

for (3.5). That is, the ζ of minimal transcendentality is ζ(L − 1) while that of maximal

trascendentality is ζ(2L − 3).5

We can also extract the coefficient of the maximum trascendentality part and show that

it coincides between the two expressions. According to the expansion displayed in [18], up to

at least L = 9 the ζ of maximum transcendentality is always present in the coefficients PL,

I
(1)
L and I

(2)
L , but not in the I

(j)
L for j > 2. Furthermore, in the exact all-loop expression

for I
(1)
L , the highest trancendentality ζ enters as 1

2PL, and thereby cancels the first PL

coefficient in (3.3). It therefore seems that the highest transcendentality contribution is

determined by the I
(2)
L coefficients. An all-loop form for these coefficients is also conjectured

in [18], with the result that the highest transcendentality ζ again has coefficient 1
2PL. All

in all, inserting the definition of PL, we have that the maximum trascendentality part of

the first wrapping correction at β = 1/2 is

δγ
1/2
max. trans. = −64g2L

(

2L − 3

L − 1

)

ζ(2L − 3) . (3.21)

In appendix B it is proven that the maximal transcendentality contribution to (3.17) indeed

coincides with this expression.6

5Such an L dependence for the ζ of maximum transcendentality was conjectured in [26], for the N = 4

theory.
6Since for large L, by Stirling’s approximation,

 

2L − 3

L − 1

!

=
L(L − 1)

2(2L − 2)(2L − 1)

(2L)!

(L!)2
∼

1

8
4L (3.22)

we see that (3.21) will decay exponentially, at large L, as long as g2 < 1/4. If none of the terms of less

transcendentality grow faster than (3.21) as L → ∞, which is indeed the case for the values of L that

we have checked, the entire wrapping correction will decay exponentially. The large L behaviour of the

correction was later made rigourous and more precise in [25].
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For odd L, the spectra at β = 0 and β = 1/2 are not expected to be related. Still,

given the success for even L, we can try to extract some non-trivial information from the

SL(2)-spectrum in this case as well. Unfortunately, this turns out to not be possible. In

particular, for twist-three operators the spectrum is usually given in terms of harmonic

sums evaluated at M/2 [27] (the one-loop piece is proportional to S1

(

M
2

)

), which do not

seem to have meaningful values when analytically continued to odd values of M . As

an alternative, one can use the relation7 S1

(

M
2

)

= S1(M) + S−1(M), valid for even M ,

and continue the right hand side to M = 1. The wrapping correction to twist-three

operators, given in [28], is as expected proportional to the square of the one-loop anomalous

dimension and thereby vanishes when this prescription is used. Curiously, this coincides

with the wrapping correction to the β = 1/2 magnon energy (3.5) for odd L. However, the

asymptotic expressions do not match since the one-loop energy at β = 1/2 is non-vanishing,

so the odd L, β = 1/2 magnon does not appear in the SL(2)-spectrum.

Instead, we can interpret the vanishing result at M = 1 as giving a magnon of momen-

tum p = 0. Indeed, harmonic sums with positive indeces and argument M/2 can always be

re-written as a combination of sums with argument M , having the property that the sums

cancel at M = 1. So if it continues to hold that the twist-three spectrum can be written

in terms harmonic sums with positive indeces evaluated at M/2, then it should vanish

when analytically continued to M = 1 to all orders, in accordance with the energy of a

p = 0 momentum magnon. Furthermore, the Baxter equation at M = 1 has no non-trivial

solution for odd L, but it always has the trivial solution where all magnon rapidities are

infinite, corresponding to zero momentum. In sum, the odd L SL(2)-spectrum does not

seem to provide any non-trivial information on the magnon energies as it, depending on

the prescription used for analytical continuation, is either nonsensical or gives the trivial

zero-momentum magnon at M = 1.

Anyway, we see that there is a substantial amount of evidence that the first wrapping

corrections to the magnon dispersion relation is the same for β = 0, p = π and β = 1/2,

p = 0, for all even L, in agreement with the β → β + 1/2 symmetry. This gives a solid

conjecture for the first wrapping correction to the single magnon operator (3.2) at β = 1/2

for all L. For odd L it is zero, and for even L it is given by (3.17).

We will conclude this section by using the β → β + 1/L symmetry to extract some

information on the first wrapping correction to the magnon dispersion relation in N = 4

Yang-Mills. The symmetry implies that the anomalous dimensions of the single magnon op-

erators, as given in (3.3), at β = N/L, coincide with the energy of the p = 2πN/L magnon

in the undeformed theory. For this set of momenta we thus have the wrapping correction

δE(p) = −2Lg2L
[

(

CL,0

( p

2π

)

− CL,L−1

( p

2π

)

)

PL

−2

⌊L

2
⌋−1

∑

j=0

(

CL,j

( p

2π

)

− CL,L−j−1

( p

2π

)

)

Ij+1
L

]

. (3.23)

7I would like to thank one of the referees of this article for pointing this out to me.
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Curiously, we obtain the correction for precisely those magnons that correspond to physical

(periodical) states of the spin chain.

4 Conclusions

In this note we have given evidence that the symmetry β → β + 1/L of the SU(2)β spin

chain of marginally β-deformed N = 4 Yang Mills, which is obvious from the point of

view of the asymptotic Hamiltonian, continues to hold after wrapping corrections have

been included. This was done by showing the equality of the physical magnon operator

dimension at β = 1/2, and the p = π magnon in the undeformed theory, for several spin

chain lengths L, and for the term of maximum transcendentality to all L. It was also noted

that previous gauge and string theory calculations are consistent with the symmetry.

The symmetry involves the general spin chain defined by relaxing the cyclicity con-

straint, but can still provide additional information on physical states. For example, equa-

tion (3.17) provides a compact expression for the first wrapping correction to the length L,

with L even, single magnon operator at β = 1/2. Furthermore, using the known expres-

sion for the wrapping correction to physical magnon operators at different β, the symmetry

would determine the first wrapping correction to the N = 4 dispersion relation at momenta

p = 2πN/L, for integer N .

The fact that we obtain the same magnon energy at β = 0 and β = 1/2 supports

the assumptions made when calculating the energy of the p = π magnon. It gives further

weight, for example, that the energy of the p = π magnon in the undeformed theory can

be obtained, for even L, by analytically continuing the SL(2) spectrum to M = 1. Fur-

thermore, the extension to arbitrary L of the string thermodynamic Bethe ansatz inspired

formula of [9] gives the expected result.

One could object that the case that we have primarily checked, that is the coincidence

of magnon energies at (shifted) momentum p̃ = π is special, since the string theory finite

size factor cos Φ becomes independent of the winding in that case. It could thus be that

the symmetry does not hold in general, if for example the winding is chosen differently in

gauge and string theories. However, as mentioned in section 2, the scaling dimension of

the L = 4 two-magnon operator, which is the Konishi operator in the undeformed theory,

also satisfies the symmetry. And the momenta of the magnon consituents of the Konishi

operator are ±2π/3 at lowest order, so this does not seem to be the case.

Curiously, these momenta are also special because up to integer multiples of 2π, and

apart from p = 0, they are the only zeros of the wrapping correction (3.23) to the dispersion

relation. It would thus be valuable to have some additional checks of the symmetry. For

example, the L = 6, M = 3 operators should have the same anomalous dimension at β

and β + 1/3.

It would also be interesting to try to connect the weak and strong coupling expressions

of the magnon dispersion relations. At a first glance they seem to behave slightly differently.

For example, the p̃ = π, β = 1/2 magnon correction, given by (3.5), vanishes for all odd

L, while the string theory correction of [19] does not do so. This difference seems to carry

over to the N = 4 theory, since the dimension of the magnon operator at β = L−1
2L should
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coincide, by the symmetry, with the undeformed magnon energy at p = π L−1
L . Letting

L → ∞ this again implies that the first wrapping correction at weak coupling for odd L at

p = π should vanish8 in an expansion around infinite volume. By contrast, the string theory

finite-size result of [29] has no L-dependence beyond the argument of the exponential.
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and especially R. Hernández for much help and support during the various stages of the

elaboration of this text. The work of J. G. is supported by a Spanish FPU grant.

A The one-magnon wrapping correction

Here we will show how to obtain the expression (3.17) for the first wrapping correction to

the magnon of momentum π in an SU(2)-sector spin chain of even length L. Our point of

departure will be the formula (17) of [9], giving the wrapping correction to the M -magnon

state in the SL(2)-sector. We assume that, for the N = 4 theory, the magnon dispersion

relation is global, in the sense that the first wrapping correction to the length L SU(2)-

magnon is the same as the first correction to the length L − 2 SL(2)-magnon. By simply

re-introducing the L dependence of the leading part of the exponential factor

4L−2

(q2 + Q2)L−2
, (A.1)

where L refers to the SU(2) length, we have the wrapping correction

δγ(L, M) = −4L−2g2L(γL
2 (M))2

∫ ∞

−∞

dq

2π

TM (q, Q)2

RM (q, Q)

1

(q2 + Q2)L−2
, (A.2)

where

RM (q, Q) =PM

(

1

2
(q − i(Q − 1))

)

PM

(

1

2
(q + i(Q − 1))

)

·

· PM

(

1

2
(q + i(Q + 1))

)

PM

(

1

2
(q − i(Q + 1))

)

, (A.3)

TM (q, Q) =

Q−1
∑

j=0

[

1

2j − iq − Q
− (−1)M

1

2(j + 1) − iq − Q

]

PM

(

1

2
(q − i(Q − 1)) + ij

)

,

(A.4)

γL
2 (M) is the coefficient of the one-loop energy, and where PM is the Baxter Q-function.

The function PM (u) is proportional to

M
∏

i=1

(u − ui) , (A.5)

8Or at least have an additional power law suppression as compared to the even L terms.

– 11 –



J
H
E
P
0
4
(
2
0
0
9
)
1
3
0

where the ui are the magnon rapidities solving the Bethe equations. For L even, the one-

loop Baxter equation requires the single magnon to have the root u = 0, corresponding to

momentum π, so in this case γL
2 (1) = 8, for all L, as seen from (2.3) or (3.1). Furthermore,

P1(u) will be proportional to the identity. Requiring that (A.2) at M = 1 gives the

wrapping correction (3.16) when L = 4, fixes the constant of proportionality to 2i. With

the replacement of the Baxter function by the identity, things simplify considerably and

we have

R1(q, Q) = (q2 + (Q − 1)2)(q2 + (Q + 1)2) , (A.6)

and

T1(q,Q) =−

Q−1
∑

j=0

[

2 +
i

q − iQ + 2ij
−

i

q − iQ + 2i(j + 1)

]

=−2Q

(

1 −
1

q2 + Q2

)

. (A.7)

Introducing (A.6) and (A.7) into (A.2) for M = 1, and using that, according to [9], the

only pole that contributes to the integral after summing over Q is the one at q = iQ, gives

the desired result.

B The maximal transcendentality contribution to the first wrapping cor-

rection

In this appendix we will show that the maximal transcendentality term of (3.17) coincides

with the maximal transcendentality piece in the marginally deformed theory, (3.21). Let us

calculate the relevant part of the residue by noting that the term of maximal transcenden-

tality dominates in the limit Q → 0. When expanding in terms of (q− iQ), the expansions

of the 1/(q2 + (Q ± 1)2) factors will be subleading in this limit, and can simply be set to

one (which is what they evaluate to at q = iQ, when Q → 0). For example,

1

q + i(Q − 1)
=

1

i(2Q − 1)

∞
∑

j=0

ij
(

q − iQ

(2Q − 1)

)j

, (B.1)

for which the expansion coefficients do not receive an enhancement as Q → 0, while the

factor 1/(q + iQ), present in 1/(q2 + Q2), has the expansion

1

q + iQ
=

1

2iQ

∞
∑

j=0

ij
(

q − iQ

2Q

)j

. (B.2)

The most singular term is then the one having the maximum number of 1/(q − iQ) terms,

since these have to be compensated for by the enhanced 1/(q + iQ)-terms. We can thus

substitute the numerator
(

1 − 1/(q2 + Q2)
)2

for 1/(q2 + Q2)2. So the maximal transcen-

dentality contribution is simply obtained by evaluating the residue

Resq=iQ

[

Q2

(q2 + Q2)L

]

, (B.3)
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which is equivalent to finding the (L− 1)− th expansion coefficient of Q2/(q + iQ)L. This,

in turn is given by

Q2

(2iQ)2L−1

(

−L

L − 1

)

=
1

4L−1

1

i

1

Q2L−3

(

2L − 3

L − 1

)

. (B.4)

Substituting the residue of (3.17) for (B.4) and summing over Q immediately gives (3.21).
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